- 扫一扫 -

- 留言 -

粒度对混煤燃烧的影响

2014/09/29 14:44 来源:《四川水泥》2014-02

对水泥厂使用的烟煤和无烟煤破碎筛分后进行综合热分析测试,结果显示两种煤炭混合后的混煤随着无烟煤粒径的减小,混煤的放热区间逐步向低温区偏移,放热集中程度也有所增强,放热峰值温度也有较大程度的降低。......

  摘要:对水泥厂使用的烟煤和无烟煤破碎筛分后进行综合热分析测试,结果显示两种煤炭混合后的混煤随着无烟煤粒径的减小,混煤的放热区间逐步向低温区偏移,放热集中程度也有所增强,放热峰值温度也有较大程度的降低。

  国新型干法水泥生产中所用的燃料以煤炭为主,为降低生产成本、提高综合效益,低挥发分、高灰分、低发热量煤炭的利用受到了越来越多的关注。大中型水泥企业普遍使用优质烟煤和低质煤搭配混煤生产,若煤种选择恰当,配比合理,发挥组分煤种各自的优越性,将会给燃煤的安全和经济性起到良好的作用。

  混煤高效利用的因素较多,从国内外的研究情况来看,对煤炭燃烧中粒度影响的国内外学者普遍都比较重视,但研究结果较为复杂,对于水泥企业生产实际而言,考查粒度对混煤燃烧的影响具有更实际的指导意义。

  本文通过综合热分析试验考察了水泥厂常用煤种在不同粒度状态下的燃烧过程,以反映烟煤和无烟煤粒度变化对燃烧结果的影响,同时分析了不同粒度的烟煤和无烟煤混合后燃烧特性的变化。试验结果初步显示通过煤炭综合热分析指导水泥生产配煤具有良好前景。

  1  试验条件

  实验用烟煤(淮南)和无烟煤(印尼)取自水泥厂原煤堆场,采用德国Netzsch STA449F3 差示扫描量热仪对各试样进行燃烧测试,工作气氛为空气,气体用量50 mL/ min,升温速率为20℃/ min,测试温度范围RT~1000℃,试样用量为10±0.5mg。

 2  试验结果及讨论

  实验首先对两个煤种测试了其在RT~1100℃内的燃烧性能,如图1和图3所示。实验工作气氛为空气,气体用量50 mL/ min,升温速率为10℃/ min,试样用量为10±0.5mg。

  为了考察粒度在煤粉燃烧中的影响,随后的试验将淮南烟煤和印尼无烟煤经过破碎、烘干后筛分为三个主要粒径区间:125~90um,90~70um,<70um,对各区间分别测试其燃烧性能。

  (1)烟煤燃烧测试

 图1  烟煤燃烧测试

  由图1可见煤样从室温开始缓慢失水,至200℃左右基本结束,伴随着失重有两个吸热峰出现,分别为外水和内水的蒸发,质量变化在16%左右。随温度升高,挥发分逐步析出和燃烧,同时由于挥发分的燃烧放热焦炭也开始逐步放热燃烧,由DSC和TG曲线可见双峰现象的出现,并在439℃和477℃达到峰值,随后还有约2%左右的质量减小,一般是少量较大颗粒的煤粉内部颗粒逐步燃烧所致,至700℃左右燃烧结束,总质量变化为65.09%。至燃烧结束最后残留质量为17.29%,该部分主要为煤炭中的灰分。

  图2   烟煤不同粒度燃烧测试

  由图2可见,淮南烟煤在不同的粒度区间内燃烧放热主要区间变化不大,但是随着粒度的减小,煤粉的成分发生了偏析,小颗粒的灰分有所降低,而90um以下颗粒的灰分变化不是很明显。

  由图2可见在500~600℃的放热区间内,DSC曲线中的峰值放热段随着粒度的减小出现了增大,相对而言大颗粒的放热集中度更高。由图2也可见研磨后煤粉中的细粉相对粗粉固定碳的着火有所提前,原因主要在于:一是比表面积增大,更有利于挥发分的析出,促使煤粉颗粒的着火;二是粉碎时不同粒度煤粉的灰分和固定碳含量有所差异。值得注意的是对于不同的煤炭而言应通过试验具体考察其成分变化趋势。

  (2)无烟煤燃烧测试

  由图3可见该煤样从室温开始缓慢失水,至170℃左右基本结束,伴随着失重有一个吸热峰出现,内水很少,质量变化在1.5%左右。由图可见在200~400℃的范围内质量基本无变化,从410℃左右开始煤粉开始燃烧放热失重,燃烧峰值温度约572℃,至700℃左右燃烧结束,总质量变化为65%。至燃烧结束最后残留质量为33.13%,该部分主要为煤炭中的灰分。

[Page]

 图3   印尼无烟煤燃烧测试


  图4   无烟煤不同粒度燃烧测试

  由图4可见,无烟煤在不同的粒度区间内燃烧放热主要区间有所变化,其燃烧开始温度在500℃左右,但随着粒度的减小,煤粉放热结束温度发生了较大的提前,粗颗在700℃左右结束放热而细粉则提前到640℃左右。同时也可见不同粒径的煤粉的成分发生了较大偏析,随着粒径的降低,灰分含量明显升高。

  (3)混煤燃烧测试

  将破碎筛分后的烟煤及无烟煤按照等质量混合后测试混煤的燃烧特性,图5~7显示了随着不同粒径的煤炭混合的变化趋势。其中图5使用的混煤由大颗粒烟煤混合三种不同粒度无烟煤组成;图6使用的混煤由中颗粒烟煤混合三种不同粒度无烟煤组成;图7使用的混煤由小颗粒烟煤混合三种不同粒度无烟煤组成。

  由图5可见在大颗粒烟煤和不同粒径无烟煤的混煤测试中,随着无烟煤粒径的减小,混煤的放热区间逐步向低温区偏移,放热集中程度也有所增强,放热峰值温度也有较大程度的降低。对比之前的测试可知,烟煤中大颗粒和无烟煤的小颗粒灰分含量高,因此由图2可见这两种煤种的组合其灰分含量最高。

  图5  烟煤大颗粒混煤测试

  由图6可见在大颗粒烟煤和不同粒径无烟煤的混煤测试中,随着无烟煤粒径的减小,混煤的放热区间逐步向低温区偏移,放热集中程度也有所增强,放热峰值温度也有较大程度的降低。

  对比图5可见混煤中的固定碳燃尽温度随着烟煤颗粒的减小而向高温段偏移。由图5的H1Y3(烟煤大颗粒搭配无烟煤小颗粒)也可见其放热在500~600℃段内达到高峰,峰值出现在550℃;而图6中H2Y3(烟煤中颗粒搭配无烟煤小颗粒)曲线可见在500~600℃段内放热也达到高峰,但峰值不明显。

  图6  烟煤中颗粒混煤测试


  图7  烟煤小颗粒混煤测试

  由图7可见在大颗粒烟煤和不同粒径无烟煤的混煤测试中,随着无烟煤粒径的减小,混煤的放热区间逐步向低温区偏移,放热集中程度也有所增强,放热峰值温度也有较大程度的降低。

  对比图5、6可见混煤中的固定碳燃尽温度随着烟煤颗粒的减小而向高温段偏移。从图7的H3Y3(烟煤小颗粒搭配无烟煤小颗粒)曲线可见在500~600℃段内的高峰放热阶段内有两处较为明显的双峰出现,这和烟煤大颗粒、中颗粒中类似曲线对比可见其放热不如之前两者放热平稳,两种煤种的小颗粒混合燃烧时更多的体现其单煤种燃烧特点,且这种趋势在较大颗粒的煤种混合时表现的并不明显。

  3 结论与展望

  (1)粒度对淮南烟煤的燃烧起止温度范围影响不大,但峰值放热区间大颗粒比小颗粒跟集中。随着粒度的减小,煤粉的成分发生了偏析,小颗粒的灰分有所降低,而90um以下颗粒的灰分变化不是很明显。

  (2)粒度对印尼无烟煤的燃烧开始温度影响不大,但随着粒度的减小,煤粉放热结束温度发生了较大的提前。同时也可见不同粒径的煤粉的成分发生了较大偏析,随着粒径的降低,灰分含量明显升高。

  (3)混煤中随着无烟煤粒径的减小,混煤的放热区间逐步向低温区偏移,放热集中程度也有所增强,放热峰值温度也有较大程度的降低。

  (4)混煤中无烟煤的小颗粒比烟煤的小颗粒对混煤的集中放热影响更明显。

  (5)相关的试验初步展示了不同粒度状态下煤炭的燃烧过程,并显示通过煤炭综合热分析指导水泥生产配煤具有良好前景。

 参考文献

  [1] 张建良,张曦东,陈杉杉,吕 卫.利用热重法研究混煤的燃烧.钢铁研究学报,2009.2:(6)

  [2] 赵凤杰,刘 剑. 煤的热重分析技术及其应用. 辽宁工程技术大学学报,2005.12:(25)

  [3] 邹学权,王新红,武建军,陈越.用热重-差热-红外光谱技术研究煤粉的燃烧特性.煤炭转化,2003.1:(71)

编辑:王欣欣

监督:0571-85871667

投稿:news@ccement.com

本文内容为作者个人观点,不代表水泥网立场。如有任何疑问,请联系news@ccement.com。(转载说明
发表评论

最新评论

网友留言仅供其表达个人看法,并不表明水泥网立场

暂无评论

您可能感兴趣的文章

产业峰会 | 齐砚勇:烧成系统操作方法改进可促进水泥行业绿色发展

3月28日上午,由中国水泥网主办的“第十三届中国水泥产业峰会”顺利召开。西南科技大学副教授 齐砚勇为峰会带来了以《碳减排背景下烧成系统操作方法》为主题的精彩报告。

郭红军:节能、减碳、降氮!采用先进工艺技术从根本上提升烧成系统综合性能

我国超过1500条熟料生产线工艺结构同质化严重,且存在很多相同的工艺技术问题。

中国水泥网高级顾问贾华平:水泥窑富氧燃烧需要辩证思维

当前,由于水泥需求下滑,市场竞争激烈,加之碳减排压力不断加大,水泥企业亟需持续推进节能降耗。富氧燃烧技术可以明显降低企业生产能耗,近年来收到越来越多水泥企业的关注。

中国水泥网高级顾问贾华平:富氧煅烧优势诸多 需辩证看待

贾华平强调,要用辩证思维打破已有经验的束缚,对于水泥窑的富氧煅烧来讲,富氧不是关键,只是要求可靠的设备运行、稳定的气体含氧量。关键是煅烧,“煅烧”是水泥生产方的专业和职责,缺经验应该自己去摸索、去总结。

“5改6”可大范围推广 齐砚勇指出水泥烧成系统节能的核心

“回转窑的热力强度不够,烧成的温度不够高,火力不集中,节能效力就会降低很多。”

上拉加载更多
微信关注
时间 地区 均价
2024-04-26

新疆维吾尔自治区

¥ 451.44
2024-04-26

宁夏回族自治区

¥ 297.87
2024-04-26

青海省

¥ 416.22
2024-04-26

甘肃省

¥ 372.95
2024-04-26

陕西省

¥ 306.73
2024-04-26

西藏自治区

¥ 635.00
2024-04-26

云南省

¥ 323.02
2024-04-26

贵州省

¥ 312.57
2024-04-26

四川省

¥ 352.34
2024-04-26

重庆

¥ 328.95
2024-04-26

海南省

¥ 432.19
2024-04-26

广西壮族自治区

¥ 305.45
2024-04-26

广东省

¥ 326.04
2024-04-26

湖南省

¥ 315.99
2024-04-26

湖北省

¥ 319.35
2024-04-26

河南省

¥ 282.33
2024-04-26

山东省

¥ 321.62
2024-04-26

江西省

¥ 317.07
2024-04-26

福建省

¥ 303.10
2024-04-26

安徽省

¥ 313.25
2024-04-26

浙江省

¥ 342.2
2024-04-26

江苏省

¥ 309.21
2024-04-26

上海

¥ 332.73
2024-04-26

黑龙江省

¥ 412.70
2024-04-26

吉林省

¥ 336.82
2024-04-26

辽宁省

¥ 310.53
2024-04-26

内蒙古自治区

¥ 337.13
2024-04-26

山西省

¥ 315.06
2024-04-26

河北省

¥ 342.12
2024-04-26

天津

¥ 338.21
2024-04-26

北京

¥ 349.43
2024-04-27 04:14:38